Skip to main content
INFORMATIVEACTIVEDocumentation Governance

Learning Sample Schema

1. Purpose

This document describes the LearningSample schema structure, which defines the format for capturing execution data that can be used for offline analysis, model iteration, or quality assessment.

Source Schemas:

  • schemas/v2/learning/mplp-learning-sample-core.schema.json
  • schemas/v2/learning/mplp-learning-sample-intent.schema.json
  • schemas/v2/learning/mplp-learning-sample-delta.schema.json

2. Schema Overview

2.1 Schema Hierarchy

LearningSampleCore (base)
├── LearningSampleIntent (extends)
└── LearningSampleDelta (extends)

Family-specific schemas use allOf to extend the Core Schema.

2.2 Core vs. Family-Specific

SchemaPurposeWhen to Use
Core SchemaBase structure with required fieldsAll learning samples
Intent SchemaExtended fields for intent resolutionsample_family == intent_resolution
Delta SchemaExtended fields for delta impactsample_family == delta_impact

Other families (pipeline_outcome, confirm_decision, graph_evolution, multi_agent_coordination) use the Core Schema directly with recommended field conventions.

3. Core Schema (mplp-learning-sample-core.schema.json)

Schema ID: https://mplp.dev/schemas/v1.0/learning/mplp-learning-sample-core.schema.json

3.1 Required Fields

FieldTypeDescription
sample_idstring (uuid)Unique identifier of the learning sample (UUID v4)
sample_familystringLearningSample family identifier
created_atstring (date-time)ISO 8601 timestamp when sample was generated
inputobjectAbstracted representation of input conditions
outputobjectAbstracted representation of actual outcomes

3.2 Optional Fields

FieldTypeDescription
stateobjectSnapshot of relevant system state before execution
metaobjectMetadata, labels, quality signals, provenance IDs

3.3 Meta Object Structure

FieldTypeDescription
source_flow_idstringFlow ID that generated this sample (e.g., FLOW-01)
source_event_idsarray<uuid>Observability event IDs referenced by this sample
project_idstring (uuid)Project context identifier
human_feedback_labelenumHuman quality assessment: approved, rejected, not_reviewed
quality_scorenumber (0.0-1.0)Automated quality score

3.4 Core Schema Example

{
"$schema": "https://mplp.dev/schemas/v1.0/learning/mplp-learning-sample-core.schema.json",
"sample_id": "550e8400-e29b-41d4-a716-446655440000",
"sample_family": "pipeline_outcome",
"created_at": "2025-12-06T12:00:00.000Z",
"input": {
"step_id": "step-001",
"step_type": "code_generation"
},
"output": {
"status": "completed",
"duration_ms": 1500
},
"meta": {
"source_flow_id": "FLOW-01",
"human_feedback_label": "approved"
}
}

4. Intent Resolution Schema (mplp-learning-sample-intent.schema.json)

Schema ID: https://mplp.dev/schemas/v1.0/learning/mplp-learning-sample-intent.schema.json

Family: intent_resolution

Extends Core Schema via allOf reference.

4.1 Input Fields

FieldTypeRequiredDescription
intent_idstringIntent identifier from IntentEvent
raw_request_summarystringAbstracted user request (PII-scrubbed)
constraints_summarystringTimeline, budget, resources
dialog_turns_countintegerDialog exchanges before resolution

4.2 State Fields

FieldTypeDescription
project_phasestringgreenfield, brownfield, maintenance
psg_node_countintegerPSG size before intent
existing_plan_countintegerExisting plans in context

4.3 Output Fields

FieldTypeRequiredDescription
final_intent_summarystringRefined intent after resolution
plan_idstring (uuid)Generated Plan UUID
plan_step_countintegerSteps in generated plan
resolution_quality_labelenumgood, acceptable, bad, unknown

4.4 Meta Extensions

FieldTypeDescription
clarification_roundsintegerRounds needed before resolution
ambiguity_flagsarray<string>vague_scope, missing_constraints, etc.

5. Delta Impact Schema (mplp-learning-sample-delta.schema.json)

Schema ID: https://mplp.dev/schemas/v1.0/learning/mplp-learning-sample-delta.schema.json

Family: delta_impact

Extends Core Schema via allOf reference.

5.1 Input Fields

FieldTypeRequiredDescription
delta_idstringDelta Intent identifier
intent_idstringOriginal intent being modified
change_summarystringAbstracted summary of requested change
delta_typeenumrefinement, correction, expansion, reduction, pivot

5.2 State Fields

FieldTypeDescription
affected_artifact_countintegerNumber of artifacts potentially affected
risk_levelenumRisk level: low, medium, high, critical
psg_complexity_scorenumberPSG complexity metric before change

5.3 Output Fields

FieldTypeRequiredDescription
actual_impact_summarystringSummary of actual impact after analysis
impact_scopeenumScope: local, module, system, global
comp_plan_requiredbooleanWhether compensation plan was needed
comp_plan_appliedbooleanWhether compensation was actually applied
rollback_usedbooleanWhether rollback mechanism was triggered

5.4 Meta Extensions

FieldTypeDescription
impact_analysis_duration_msintegerTime spent on impact analysis
predicted_vs_actual_accuracyenumaccurate, underestimated, overestimated

6. Other Family Schemas

The following families use the Core Schema directly without extensions:

Family IDDescriptionRecommended Input FieldsRecommended Output Fields
pipeline_outcomePipeline stage success/failurepipeline_id, stage_idstatus, duration_ms, error_info
confirm_decisionApproval/rejection decisionsconfirm_id, target_type, risk_labeldecision, reasoning
graph_evolutionPSG structural changestrigger_event_id, change_typenodes_added, edges_added
multi_agent_coordinationSA/MAP collaborationsession_id, coordination_modetotal_turns, outcome

These families follow Core Schema structure but use field conventions documented inSee: Learning Taxonomy.

7. Sample Families Reference

Based on Core Schema sample_family examples:

Family IDDescriptionPrimary Schema
intent_resolutionUser intent clarification and plan generationmplp-learning-sample-intent.schema.json
delta_impactChange effect analysis and compensation planningmplp-learning-sample-delta.schema.json
pipeline_outcomePipeline stage success/failure patternsCore Schema
confirm_decisionApproval/rejection decisions and reasoningCore Schema
graph_evolutionPSG structural changes over timeCore Schema
multi_agent_coordinationSA/MAP collaboration patternsCore Schema

Schemas: 3 (1 core + 2 family-specific) Sample Families: 6 Source: schemas/v2/learning/*.schema.json